D'Alembert theorem
If three circles $A$, $B$, and $C$ are taken in pairs, the external similarity points of the three pairs lie on a straight line ($I,J,K$ are aligned). Similarly, the external similarity point of one pair and the two internal similarity points of the other two pairs lie upon a straight line, forming a similarity axis of the three circles (Two inner centers are aligned with an outer center:
$I',K',J$ or $I',J',K$ or $I,J',K'$).
[PDF]
[TEX]
\documentclass{standalone}
\usepackage{tkz-euclide}
\tkzSetUpPoint[size=1,color=teal]
\tkzSetUpLine[thin,color=teal]
\tkzSetUpCompass[color=orange,ultra thin,/tkzcompass/delta=10]
\tikzset{label style/.append style={color=teal}}
\tikzset{new/.style={color=orange,ultra thin}}
\tikzset{step 1/.style={color=cyan,ultra thin}}
\tikzset{step 2/.style={color=purple,ultra thin}}
\begin{document}
\begin{tikzpicture}
\tkzDefPoints{0/0/A,3/0/a,7/-1/B,5.5/-1/b,5/-4/C,4.25/-4/c}
\tkzDrawCircles[fill=teal!20,opacity=.3](A,a B,b C,c)
\tkzDefExtSimilitudeCenter(A,a)(B,b) \tkzGetPoint{I}
\tkzDefExtSimilitudeCenter(A,a)(C,c) \tkzGetPoint{J}
\tkzDefExtSimilitudeCenter(C,c)(B,b) \tkzGetPoint{K}
\tkzDefIntSimilitudeCenter(A,a)(B,b) \tkzGetPoint{I'}
\tkzDefIntSimilitudeCenter(A,a)(C,c) \tkzGetPoint{J'}
\tkzDefIntSimilitudeCenter(C,c)(B,b) \tkzGetPoint{K'}
\tkzDrawPoints(A,B,C,I,J,K,I',J',K')
\tkzDrawSegments[step 1](I,K A,I A,J B,I B,K C,J C,K)
\tkzDrawSegments[step 2](I,J' I',J I',K)
\tkzLabelPoints(I,J,K,I',J',K')
\end{tikzpicture}
\end{document}