Only Compass
Example 1
Construct on the circumference of a given circle a point diametrically opposite to a given point $A$.
There are several methods, the one described is the best because the compass opening remains constant.
Variation of the problem : Double, triple... multiply a given length by any integer.
[PDF]
[TEX]
\documentclass{standalone}
\usepackage{tkz-euclide}
\tkzSetUpPoint[size=3,color=teal,fill=teal!10]
\tkzSetUpLine[line width=0.4pt,color=teal]
\tkzSetUpCompass[color=red,ultra thick,delta=0]
\begin{document}
\begin{tikzpicture}
\def\r{3} \def\angle{200}
\tkzSetUpArc[delta=10,color=purple,line width=.2pt]
\tkzSetUpLabel[font=\scriptsize,red]
\tkzDefPoint(0,0){O}
\tkzDefPoint(\angle:\r){A}
\tkzInterCC(O,A)(A,O) \tkzGetPoints{C'}{C}
\tkzInterCC(O,A)(C,O) \tkzGetPoints{D'}{D}
\tkzInterCC(O,A)(D,O) \tkzGetPoints{X'}{X}
\tkzDrawCircle(O,A)
\tkzDrawArc(A,C')(C)
\tkzDrawArc(C,O)(D)
\tkzDrawArc(D,O)(X)
\tkzDrawLine[add=.1 and .1](A,X)
\tkzDrawPoints(O,A)
\tkzSetUpPoint[size=3,color=purple,fill=purple!10]
\tkzDrawPoints(C,C',D,X)
\tkzLabelPoints[below left](O,A)
\tkzLabelPoints[below](C')
\tkzLabelPoints[below right](X)
\tkzLabelPoints[above](C,D)
\end{tikzpicture}
\end{document}